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This work adjoins that of Sobolev [1] in which was investigated the stability
of fundamental (unperturbed) motion of a symmetric closed vessel with a sin-
gle fixed point (symmetric top), which was filled with an ideal incompress-
ible liquid. Here, the fundamental motion denotes & uniform free rotation
in the gravitational fleld of the entire system (top + liquid) as a single
rigid body about the top's axis of symmetry which does not alter 1ts position
in space, while the cause of perturbation is a small deviation of this axls
from 1ts initial position and the simultaneous "inclusion’ of other external
forces. The paper [1] investigates the stability of two degrees of freedom
of the top characterized by the two-coordipate projection of the top's unit
vector along its axis upon a plane perpendicular to the axis of rotation for
unperturbed motion. Also, it is 1mplicitly assumed that the third degree of
freedom has no effect upon these two degrees of freedom, and that consequently,
such a separate investigation of sfabllity along these two coordinates is
valid, Section 1 of the present paper justifies this assumption. The expo-
sition of this section 1s parallel to the corresponding part in [1] with
natural additions associated with the introduction of a new degree of free-
dom which is the angular velocity of the top's characteristic rotation.
Section 2 investigates the stability of the third degree of freedom. It is
shown that in difference with the first two coordinates, the stabllity of
which depends on the form of the top's shell and the physical parameters of
the problem, the angular velocity 1s always stable.

In conclusion, the author thanks S.L. Sobolev for hls interest and valu-
able advice,

1. 1. Consideration is given to a heavy symmetric top fixed at the foot
and completely filled with an ideal, incompressible fluld of density o
The top is rotating with a constant angular velocity w about the axils of
symmetry of order x > 2 (the order of symmetry 1s determined as the lowest
natural number »n such that the top coincides with 1tself for a rotation
angle of en/k about its axis). Let § be the surface of the top's cavity
filled with & liquid; 4, and u, are the masses of the top and the liquid,
respectively; (¢, and (, are the moments of inertiaof the top and the liquid
about the axis of symmetry; 4, and 4, are the moments of inertia of the top
and the liquid about axes perpendicular ta the axis of symmetry; !, and |,

36



Spinning of a top with a liquid filled cavity 37

are the distances from the fixed foot of the top to the centers of gravity
of the top and that of the liquid, and ¢ 1is the gravitational agceieration.

The origin of the flxed Cartesian coordinate system Ox*y*s* 1s attached
to the fixed point of the top, the zx*-axis being directed vertically upward.
The axis of the top in unperturbed motion will also be assumed directed upward
along the vertical. The spatial orientation of the top is usually given by
three Euler angles., However, for the stability investigatlon of small devi-
ations of the top's axis, the position of the top is more convenlently deter-
mined by the parameters X* Y* {§ 1in which X* and Y* denote the coordi-
nates of the projection on a plane x*y* of & unlt vector directed along
the top's axis from the foot to the center of gravity. The parameter 9 1s
related to the projection n of the top's angular velocity on its axis by
the relationship d¥ = ndt.

The quantity d¥ as 1s known, is not a total differential and therefore,
n 1s not a Lagrangien generalized coordinate in the usual sense; it 18 a
so-called quasi-coordinate. The parameter ﬁ' has no definite meanirng. A
definite meaning have d¥, or the projection n which is connected by known
relationships with the Euler angles and which characterizes the so~called
;;::?cteristic rotation of the top (rotation about the top's characteristic

2. The equations of motion for the top in terms of the paramete:rs x*,

Y* and 7 under the assumption of small x*, y* and n —w are of the
form
A, X* + CoY* — gl M X* — My (p*) — Mp® =0
AY* — CloX* — gl MY* + Mo (p*) 4- Mo®=0 (1.1)
Cm — M (p*) — M* =0

Here M, (p*), My (p*) and M,s (p*) are the moment projections of
fluld pressure forces acting on the shell of the top, Mye°, M=%, M,»° are
the moment projectionsof the external nongravitational forces. The system
of equations {1.1) is incomplete since it includes the moment of fluld pres-
sure forces which should be determined by the use of hydrodynamic equatlions

du*

= + _;)_ grad p* = F _ gk, dlv u* = O (12)

where ¥» 1s the vector of external mass forces and k 1s the unit vector
along the z*-axis. A natural boundary condition for Equations (1.2) 18 the
impermeability of the top's shell to fluid particles

u* s = wn* S (1'3)

Here w.* is the normal component of the transport veloclty of the top's
shell dependent on the parameters Ix¥*, r*, n .

The boundery condition therefore represents a feedback, and along with
Equations (1.13’ and the partial differential equations (1.2) ylelds a com-
plete totality of relationships.which fully determine the motlon of the sys-
tem of the top plus the fluid for arbitrary initial conditions, It would
be too optimistic to expect an expliclt expression for this motion, Such an
objective 1s not set in this case. The objective, as noted previously, is
to investigate the stability conditions in one sense or another, i.e. in
establishing the conditions for which the motion corresponding to a small
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devlation from a free, uniform rotation about the vertical (*) will remain
always small or bounded, or will not increase beyond a given order of magni-
tude with time dependent on the growth character of the external forces,

3. In investlgating the effect of perturbations, 1t is natural to con-
sider not the complete solutlion of the problem of perturbed motlon but only
the difference of thils scolutlon and the solution for unpertirbed motion (*).
This, apparently, requires the use of the coordinate system Oxyz , which
rotates about the z*-axis with angular velocity w and which coincides ini-
tially with the fixed system ox*y*z*. Furthermore, instead of the scalar
function pP* and the scalar n 1t 1s necessary to introduce another scalar
function pP (expressing the excess of fluld pressure, withln the accuracy of
an unessential constant, and resulting from the effect of the perturbation)
and another scalar © by the relationship

p* o= — pgz* - Y, pw? (22 4 y*?) + p, n=o0-+0 (1.4)
The acceleration of a fluid particle 1in the fixed system conslists of the
relative, transport and Coriolis accelerations. Utilizing this fact and
(1.4), the equations of motion for the fluid 1n the rotating system of coor-
dinates are obtained from (1.2) after neglecting the small terms of second

order Uu’f 90u 1 dp 6;12 n 1 op
ot v g T T ot T az — ¢ (1 5)
du 1 & ou ou du )
_ ¥ 9 % _F SN Wt -
g T 20ux - = Fy, s Ty T =0

Utilizing the relstionship (1.%) 1t can be shown [1] that
My (p*) = My (p) — (gloeM, + 0?4, — 0°C,) Y*
My (p*) = My (p) + @M, + %4, — 0°C,y) X*
M (p*) = M.~ (p)

Substituting these expressions into Equations (1.1) and introducing the
complex parameter Z = X -+ iY = e~it (X* 4 [Y*), we get the complex form
of the top's equations of motion in the rotating system of coordinates

AZ — (C, — 24) i0Z 4+ Lo*Z + 2iN (p) 4+ 2iN° =0
Co — M, (p) — M,° =0 (1.6)
Here
L =C, 2 C,— A — A __ B(LWM1 + 1sMs)
S U 2 A 2 T
2N (p) = M, (p) + iMy (p), 2N° = M,° + iM,°
Let us introduce

p = z (cos nz + icos ny) — (z + iy) cos nz, v = I oS ny — y €08 nx 1.7)

*) The free (F= My = M= M,;2=0) and uniform (n = w = const) rotation
about the vertical (unperturbed motion) has, as can be easily shown, the

simple complete solution
X*=Y*=0, 1 =0, Ut=okxr, p*="1/2 po*(@**+ y*?) —pgz*- const.
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Then we get

oV (p) = i \\wpas, M, (p) = {vpas (1.8)

Now let us express conveniently the_bouﬁdary condition (1.3). The top's
shell participates in two rotational'métions caused by the deviation of the
axls and its characteristic rotation. It is not difficult to see that the
vector of angular velocity of the first motion 1is equal to (— ¥+, x-, O)
in the rotating coordinate, while the second motlion has the angular velocity
(0, 0, 8) with the accuracy of up to the infinitely small terms of second
order.

Consequently, the transport veloclty of the top's shell is expressed by
the vector (X'z — 0y, Yz+0z, — X'z —Y'y), and condition (1.3)ylelds
the relation for the points on the surface $

u, = X (zcos nx — z cos nz) + Y (z cos ny — y cos nz) +
+0 (x cos8 ny — y cos nx)

For convenience, let us express this condition by ~Z and 6 . We have
u, =Yy (Z'p + Z'p) +0v (1.9)
where p and v are determined by the equalities (1.7).
We introduce the complex varlable { = x + i1y and the complex functlons
up = u; + iuy, wp =uw, — i, Fy=F,+ iF, F;=F,—iF, (1.10)

Defining further the formal differentiation with respect to ¢ and ¢
by the equalities

LNSWE N ) o _ 1o 0
3T = 2 \ s ay)» E”T(az'*"lﬁy')
it 1s easy to express the system (1.5) in a complex form. Thus
ou 2 9 ou 1.0
z . 2 0p __ z 1% _F
Y3 + 2iouyg + P ot = Fy, at p 0z z
- ) —_ F.) (1.11)
gy O 0T T
e ALY A a T ag | oe

The expediency of complex variables is manifested 1n the possibility of
representing the complete solution of the combined motion of the top and the
fluid as a sum of k articular solutions (recalling that x 1s the order
of symmetry of the top). Also, only two of the x sloutions need to be
investigated since in the remalning solutions the interaction of the top and
the fluid is absent. Futhermore, 1t appears that these solutions, in turn,
can be investigated separately since in one of them only the Z parameter
of the top participates along with the fluld parameters (the 8 parameter
is absentg, and in the second solution only the 8 parameter is included
(z 1s absent).

Decomposition of the complete solution into solutions occurs as fol-
lows (see [1]). Let ofx, y, z; t) be an arbitrary (complex valued) func-
tion defined for ¢ > 0 in a region ¥ bounded by the surface § . Let us
regard z and t as parameters with ¢ a functlon of two real varilables
x and y . Each such function ¢ will be connected with a function of a
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palr of complex varlables ( and { , for simplicity denoted by the same
symbol ¢ , and defined by the equalilty

P =9 ML+ —Yi(E— )z 0).
The two-dimensional complex manifold on which the function o, T) is
defined 1s given by the condition (x, y,z) &V . In view of the assumed sym-
metry of the reglon | , 1t 1is apparent that for any pair ({, T) in the
region where o((, {) 1s defined there is a pair ({ exp (2nil/ k),
Cexp (— 21il / k)) for any integral ! . Let us consider now the % new
1unctions

%n@c)—-zen>ML o(cexp BE, Lexp—2L) (om0, k—1)

It 1is appa.rem: that @) can also be defined for all integral s by
setting Q@) = P, for & = s, (mod k). Also, in particular for the real

® , we get Qs = Pg)-
The following exparsion is easily shown to be valid

k-1 _
LD =2 D
8320
The uniqueness of such an expanalon is obvious: if @ = 0, then Py = 0
for any & .
The functions () possess the distinctive periodlcity

) = exp — @ (£, 0)

It 1s easy to prove by direct calculation the validity of the converse
statement: 1f a certain function ¢ possesses perlodicity in the stated
sense with period g , then @y =0 for s ==s and @y = .

P (Qexx) 5o Lexp—

5. Let us now apply the (e) operation to Equations (1.11). Taking into
consideration the easily verifiable relationships

0w (_a_‘f_> M) ( 3<P)
L oL Jis+1)’ ot oz /(s-1)
we get (s=04,..., k—1)
dup, (s 2 9p
t: (6 1) + 210)”( (+-1) 4= 8 F(, (5-1)
P ot
dux 2 ap
tat(su)_ 2i0UT, (s41) + (8) = F5 (w1 (1.12)
o
O 1 9P Our s1) . %, auy) o)
at R A at 9 + 5 =0

The system (1.11) is therefore divided. Instead of a single system, we
get x new systems relating Uy, (s-1), Ug, (s+1) Uz, (8)s Plo)-

Let us turn now to the boundary condition. Substituting the expressions
for y, and u, from (1.10) into (1.9) we get the following relationship on
S
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Auy -+ Mig + 2u, cosnz = Z'p ++ Z'p + 20v

. (1.13)
Noting that A = cos nz + icosny
M@wﬂa hw—“ﬁ=uﬂﬁx@©
A (gexp 2, Texp = ')=exp_imx(c, 3]
u(@mp , Texp =) = exp Zu (1, D)
b (exp g, Texp= ) exp = (0 O
(CeXD : CeXP ) = (C,Z)

we obtain A = Ay, A= Ag, B =Py, B =Ry and V= V. Therefore,

applying the (g) operation to both parts of the equality (1.13) we get the
following condition on § :

Mg, s_1) + Mz, 51y + 2Us() €0s nz =

(ZE, S:1
— = . VA s=—1=k—1 (mod k)
=Zpo + Zpw + 2WV0 =10 (1.14)

{ 0 for other g

Substituting into N, {(p) the expression p , we get, in accordence with
(1.8), k-1,
M, (p) = 20 SS Py Vds (1.15)
8=

We make a change of variables in each of the integrals in (1.15) and
rotate the coordinate axes in the xy plane through an angle 2n/% . Also
ih view of the symmetry of the top, the region of lntegration will not change.
In accordance with the above indicated property of the ¢ function periodi-
city, the p  function will transpose into exp (— 2smi [ k)p,y» while the
v function will not change since v = V(,, as was shown previously. The
Jacobian of this transformation 1s apparently equal to unity. Therefore,

%g Py VaS = exp :%L—RS Py VaS

and consequently, all integrals in (1.15) vanish except the integral in
which & = O . It 1s shown analogously that the integral on § from pu
is equal to zero if g # 1 . Thus, we get

M; (p) = M: (po)s N (p) = N (pw) (1.16)

6. Now it remains only to draw the conclusions. The system of equations
(1.6) which describes the motion of the top contains the p function for
the determination of which were invoked the relationships (1.12) and (1.14%).
However, according to (1.6) and (1.16) the motion of the top 1s affected
only by the components p() &nd P, which can be determined from (1.12) and
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(1.14) for 8 = 0 and 8 = 1 . Conversely, the top affects ,only those com-
ponents of fluid motion which are related by the relationships (1.12) and
(1.14) for the same values of & since for other values of g the boundary
condition (1.1%) is homogeneous and does not contain the parameters of the
top. Furthermore, the indlcated relationships show that the parameter 2

1s affected only by the component pPy;), while the system of relationships
determining p(;), does not contain the § parameter. Conve-sely, the ¢
parameter 1s affected only by the component p,), which is determined by con-
sidering the relations (1.12) and (1.14) for & = O 1in which Z does not
appear. Thus, only the cases (*) 8 = 0 and & = 1 need to be investigated
These cases are not connected to each other and can be investigated separa-
tely. The case of 8 = 1 has been studied in.[1]. The stability for s =0,
however, (the stability of the g parameter) 1s proved in the following.

2. 1. In order to transfer the top effect from the boundary conditions
into the equations, let us i1ntroduce the followlng new functions

~ . oy L )

v, = UC» ) +' llc} (~1) —~ 2.0 ?—;’ ?JU =1 (Uz,(l) —_ u; (_])) 2. 7}*
& [y ()7
v, = 2w — 2020

where the ¢ function is defined by the conditions
o |
Ap = 0, “j v (2.1)

on S
In accordance with (1.14) (for g = 0), the v vector satisfies the homo-

geneous boundary condition uv,= 0 on § . And the equation for v is

obtained from Equations (1.12) for g = O by addition and subtraction. Thus,

we have

(')vx 2 ap(()) a0° 81‘7 81‘, —
TRt o T2 g —deb =G
8Q ) 9 dp e O ) g
_‘ai/ -+ 200, -+ T)— “—a;m + 20 % + 4039—5; =0y (2.2)
dv P
D LMoL G, dive=0, bas=0

where
Gy = Fg, oy + Fy, 1 Gy =i (Fg,) = Fg, o)y Go = 2F:

The system of equations (2.2) along with the second equation of system
(1.6), in which according to (1.16) the M, (p)should be replaced by M, (p, ),
yields a closed system of relationships which will be termed the be system.
Before investigating the pa system, we will make the following remark.

If 1t 18 regarded that the vector @ 1is continuous in the region V¥ up
to the boundary and that it has continuous derivatives of first order inside
¥ , then without loss of generality it can be stated that 1t is of a certain
special form, namely

G=g@)grady + ¥ (2,4, 2z 1)

*) 1t can be easily seen that the solution of the problem for 8 = jp—1will
be simply a complex~conjugate to the solution for 8 = 1 .



Spinning of a top with & liquid filled cavity 43

where ¢ 1s a certain (known) function only of ¢, y 1is the solution of
the boundary value problem (2.1), and the vector J satisfies the conditions

div¥ =0, ¥,=0 ong (2.3)

In order to prove this statement, we will-denote by @ (x, ¥y, 2:t) the solu-
tion of the Neumann problem with the boundary conditlon ad/on = G, on §
for the Poisson's equation (in space variables) with the ri ht—hana side
equal to div G.. It is obvious, here, that ¥ = G — grad O satisfies both
conditions (2.3). Consequently, it is only necessary to show that the §
function can be considered equal to o(¢)¢(x,y,2) . Denoting,

B (IR C

we get the expansion ® = f(x,y, z; ) + ¢ ()P (=, ¥, 2), where the 7 function
satisfiles the conditlon
S S fvdS =0

It remains to be noted that without loss of generality one may regard
f = 0, since the particular solution of the considered {(1inear) system Dy »
corresponding to the case of f=#0,¢=0, ¥ =0, M) =0, 1s found by elemen-
tary means and 1s of the simple form =0, v __0,1%0)=:1/2pf Thus the gilven
statement 1is fully proved.

Let us introduce now instead of the function pm) the function

q = 2py, + 200"p — pg (2.5)
Then the equations of system (2.2) will become
0v 1 Y
i — 200, + - o — hah o = ¥
a_;+2mvx+—‘—_+4 o 20 “’ =, (2.6)
dv, 1

-+ = 5 8z =¥, dlvv=0, vals =0

Multiplying the first three equations of system (2.6) by ay/ax , 3y/dy
and ay/éz respectively, adding and intergrating with respect to v , we
obtain on the strength of (2.1), (2.3) and (2. 6)

2&)888(%%— — 1,8612) av 4+ — \S gvdS = 0

The obtained equation in conjuction with the second equation of system
(1.6) and the equalities (1.16) and (2.5) gives

Ot o104 o (0%~ 02 e B @

Here o 1s determined by (2.4%). The system of equations (2.6) and (2.7)
is in convenienu form of the system Dg for its further investigation. It
is easy to see that all quantlties in the system De are real.

Taking the div operator from the first three equations in (2.6) we get

after addition . ; avy dv

The equations of the system (2.6) also yield the boundary condition on §

i}
g—i = 2pw (v, €os nx — v, cos ny) + 4obp (%15— cos nr — 71)— cos ny) (2.9)
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1t follows that the function ¢ 18 determined {with accuracy of up to
the unessential constant term) by specifying v and g . Consequently,
knowlng v and ¢ (and also the external behavior , the functions Y , g
and ¥,°) at any time, one can compute v, = dv/dt and g, = de/dt in accord-
ance with Equations (2.6) and (2.7) which thus specify a certain operator
transforming the pair (v, §) 1into the pair (v,, 9,). The exact determi-
nation of this operator is given in the following.

2. Let & denote a Hllbert space of real vector functiions v defined
in the region ¥y and satisfying the conditions

@ e+ v+ oy =y < + o

(») Por any function ¢(x, y, &) which has inside the regilon V¥
continuous first order derivatives the squares of which are integrable in
¥, the following identity is valid

e

Note . For smooth v functions the condition ib) is equivalent to
the fulfillment of the last two equalities in system (2.6).

Lesma (*). The linear manifold of v functions having derivatives of
any order continuous up to the boundary of the region V¥ 1s everywhere
dense in g .,

Let, furthermore, {R) denote the real vector space of the elements
R = (v,8) (VEH, 6 1s a real number) with a natural determination of
linear operations and a norm given by the equality |R| = max {|v], |0 [}

3. The equations of the system Dy (Equations (2.6) and (2.7)) can be
expressed 1n the form
R =TR+R, R =(dv/dt,do/d) (2.10)
Here dv/d¢ 1s understood in the sense of a strong convergence in g
of the corresornding difference relationship, R, 1s the element of space {R]
having the components 2M,° + pgat ,
(¥, 2 om) (2:11)
and 7 is a linear operator presently defined only for those elements of
space (R} in which v has continuous derivatives. The set of such elements,
in view of the above formulated Lemma, 1s dense everywhere in {#} . There-
fore, if the operator 7T becomes bounded in this set 1t can be extended
uniquely over the entire space {R} . Before showing the boundedness of 7,
we will write out the formulas defining this operator. If one lets
TR = R = (v,, 8,) then, according to (2.6) and (2.7), we get

*) The proof of this Lemma is contained in [2].



Spinning of a top with & 1liquid filled cavity ks

1 o b 1 d f
Z)lx=2(1)'0y"—?—a%+4me-5‘§p‘, vw=—2mvx——-—p—@q~—-4m6~aﬁ—
_ 1 ¢ ____pw A RS 2.12
Ve = — 91~WSSS<Uy'5;—vx-a—y->dV (212)

These formulas should alsc be augmented by the relationships (2.8) and
(2.9) which determine the function ¢ 4n terms of the element » . From the
the previous Note, it follows easily that TR & {R} for R ={R)}.

The boundedness of the operator T can be proved.

Let v be a sufficlently smooth vector. The first equation (2,12)
yields the equality

1 fog\2 | 2 aq A 2 oy
v S - 4 - 2o, 1 = 4plpy® 4 160202 (—.) +16w? Ov , X
lx+ 02 (6x> + o 1x 5o v+ 3y, vay
The second and third equations of the system (2.12) yleld the similar
equalities. Summing all three.equalities and integrating over the region v,
we get

il + —lgrad g + = \\{ (71 54+

+ vy ‘;—Z— + v 6_(1) dV = 4@? &Sg (v2 + v2) dV + 160262 Sgg [(%P)z +

1z dz

P2 Ay o
4 - 16w20 v. Y+ v “¥\dV
() | oo ({05240, )

Let us' eliminate the second term in the left-hand side of this equality.
The next term is equal to zero in view of the property (») in the definition
of the space K . On the strength of the same property the last integral on
the right-hand side can be replaced by an integral over V from —v, (?\p/az).
Taking the above lrito consideration, we obtain the following bounds:

il <20 (fvi+ 2]6]la) <20 (1 + 2a) | R (2.13)
The last equality of system (2.12) ylelds the bounds
2 poa < 2 poa
10,1 < G pa WIS o 181 (2.14)

From (2.13) and (2.1%), one gets, apparently, the following bounds for
the norm of the operator

| T < max {2(0 (1 + 20), T}'IZL—:%&T}

Thus, the operator T 1is bounded and it can be extended over the entire
space {R}. It 1s also obvious that the smooth solutions of Equation (2.10)
will be the solutions of the De system, and conversely, the solutions of
the D, system will be smooth solutions of Equation (2.10). The solutions
of Equation (2.10) however, which have no classical derivatives can be
regarded naturally as the generalized solutions of the De system.

4, We continue the investigation of Equation (2.10). Let us first con-
slder the corresponding homogeneous equation
R =TR (2.15)
It can be easlily shown by direct verification that the solution of Equa-
tion (2.15 is of the form
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R () = eM™ RO, RO = (v]_, 0]i) (2.18)

Here the operator €Tt 18 understood in the sense of a strong convergence
of the corresponding power series guaranteed by the boundedness of the oper-
ator 7 1in view of the obvious inequality | Tm” <”T”m (m=1,2,...).

It can be shown that there exists in the entire space {R] a given positive-
definite bilinear form Q (R(I), R(2)), with respect to which the operator T
is antisymmetric 1ln the sense that

Q (TR(I), R(‘a)) - _Q (R(l), TR(‘B)) (217)

In order to prove this, we will seek the form ¢ 1in the form
ap 2
Q@®’Y, R®) = Q, SS& 0 5@ p Wy @ @y @) gy 4 Q00 0

where @, and ¢, are positive constants subject to determination.
Then, utilizing (2.12), we get

Q (TRW, R®) = 20Q, S\S (0,0 @ — p ©y @) gy 4 40)0‘6(1)88& (335 b _

N (g pef® Q, % S W, w_9%%, m
~ 5V >dV—{~ C, T oa (%v” E;vx >dV

Q (R, TR®)) =20Q, SSS(U"(” 0, ® — 0,00, @) aV 4 40Q,6?) SRS (% oW

W w pwd® Q2 @ .
~ %, >W+WSSS(E% Lom)av

It is now obvious that the inequality (2.17) will be fulfilled, and @,
and @, satisfy the condition pQ:= 4 (Ci-}- pe?) Q1. As sheuld have been
expected, this condition defines @, and @, within the accuracy of a common
multiplier. Letting, for example, @, = %p, Q.= O, + pa® we obtaln the bilin-
ear form satisfying condition {2.17).

From (2.17) we have Q (I™R™W R®) = (—1)"Q (R®, T"R®} (m=1,2,...).
Therefore, on the strength of the linearity of ¢ , each argument separately
easlly ylelds Q (eT‘R(‘I), Rm) = @ (Rm, e—T'R(')). Consequently, the follow-
ing relatlonship 1s velld:

Q ("R, e"R) = Q (R, R), Re )} (2.18)

The stability of the solution of the homogeneous equation (2,15) follows
easily from the derived relationship. Indeed, let us introduce in the space
{R] along with the original norm also the equivalent norm generated by the

¢ form: IR, =V Q&R (2.19)
At the same time the equality (2.18) shows that whatever the 1nitial value
of R the solution of the Cauchy problem for Equation (2.15) defined by
Formula (2.16), remains for all time on the surface of & fixed sphere with
center at the origin (zero) and the radius equal to VQ (R("), Rm)’ i.e.
IR, =[R"™|, for any time ¢t . Thus, in the case of smallness of the
values of ||v|| and 8] for ¢t = O, the quantities |lv(z){ and |6{¢)| remain
small for all time., This indicates the stability of the equatlons of system
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pe and, in particular, the stability of the parameter ¢ 1in the case of
zero external nongravitational forces.

The equality (2.18) can also be interpreted somewhat differently. It shows
that the positive-definite quadratic form ¢(R, R) is the integral of motion
of Equation (2.15) since along the trajectory of this equation 4¢/dt = O
in view of (2.16) and (2.18).

Let us turn now to the nonhomogeneous equation (2.10). The solution of this
equation, as can be veriflied directly, 1s of the form

t

§ — () T (it
R (1) = eTtR &e”’ 9 R, (1) dv (2.20)
0
where the integral 1is understood in the sense of a strong convergence of the
corresponding integral sum. Utilizing the equalities (2.18) and (2.19) and

taking an elementary estimate, we obtain from (2.20)
f

IROW<|RO |, T @, T =\I1, (@], dv (221

Thus, for the parameter ¢ (in contrast to the parameters Yy and Y)
there are no resonance phenomena such as a fast increase with ¢ for speci-
fic relationships among the problem constants and the geometric form of the
top shell, If, for example, Hﬁo(t)“l remains bounded for the entire period
of time, then, acoording to (2.21), ||#(¢)|l, (in particular 5(t)) increases
no faster than the first order of ¢ . Purthermore, for small initial values
of [R©]|,, as well as the "summed action" of the external forces (quantity
J(=)), then |&(¢)||, (in particular §(¢)) also remains small for the entire
period-of time. In this sense, it can be stated that the stabllity exists
also in the general (nonhomogeneous: F == 0, M,° == () case,
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