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This work adJolna that of 8q, bolev [1] In whlch was Investlgated the stability 
of ~ n t a l  (~ertuPbedJ motlon of a symmetric closed vessel with a sin T 
gle f ~ e d  point Is~WletPlc topJ, which was filled wlth an ideal incompress- 
Ible liquid. Here, the fundamental motion denotes a uniform free rotatlon 
In the gravitational fleld of the entire system (top + liquid) as a single 
rigld body about the top's axis of sTnaetrywhlch does not alter its position 
in space, while the cause of perturbation Is a small deviation of thls axis 
from lts Inltlal position and the simultaneous "incluslc~" of other external 
forces. The paper [i] invest~4~ates the stability of two degrees of freedom 
of the top ehLracterlzed by the two-coord~u~ate projection of the top's unit 
vector along its axis upon a plane perPendlc~tlar to the axis of rotation for 
unperturbed motion. Also, it is Implicltly assumed that the third degree of 
freedom has no effect upon these two degrees of freedom,:and t~t conse~ntly, 
such a se~ate invest~tlon of s~ability along these two coordinates is 
valid. Section i of the present paper Justifies this assumption. The expo- 
sition of this section is parallel to the corresponding part in [I] with 
natural additions associated with the introduction of a new degree of free- 
domwhich is the ~ a r  velocity of the top's characteristic rotation. 
Section ~ Investigates the stability of the third degree of freedom. It is 
shown that in difference with the first two coordinates, the stability of 
which depends on ~he form of the top's shell and the physical parameters of 
the problem, the angular velocity is always stable. 

In conclusion, the author thanks S.L. Sobolev for his interest and valu- 
able advice. 

I. i. Consideration is given to a heavysymmetrlc top fixed at the foot 

and completely filled with an ideal, incompressible fluid of density ~ . 

The top is rotating with a constant ar~ular velocity w about the axis of 

symmetry of order k > 2 (the order of symmetry is determined as the lowest 

natural number n such that the top coincides with itself for a rotation 

angle of ~/k about its axis). Let S be the surface of the top's cavity 

filled with a liquid; M~ and Ms are the masses of the top and the liquid, 

respectlvely~ C~ and Cs are the moments of Inertlaof the top and the liquid 

about the axis of s~mmetry; A~ and As are the moments of inertia of the top 

and the liquid about axes perpendicular ta the axis of symmetry; ~ and Z. 

36 



Spinning of a top with a liquid filled cavity 37 

are the distances from the fixed foot of the top to the centers of gravity 

of the top and that of the liquid, and ~ is the gravitational a~celeragion. 

The origin of the fixed Cartesian coordinate system 0x*y*z* is attached 

to the fixed point of the top, the z*-axis being directed vertically upward. 

The axis of the top in unperturbed motion will also be assumed directed upward 

along the vertical. The spatial orientation of the top is usually given by 

three Euler angles, However, for the stability investigation of small devi- 

ations of the top's axis, the position of the top is more conveniently deter- 

mined by the parameters X*,Y*, ~, in which ~* and Y* denote the coordi- 

nates of the projection on a plane ~*y* of a unit vector directed along 

the top's axis from the foot to the center of gravity. The parameter ~ is 

related to the projection ~ of the top's angx~ar velocity on its axis by 

the relationship d~ = ~dt. 

The quantity d$ as is known, is not a total differential and therefore, 
is not a Lagr~iangeneralized coordinate in the usual sense; it is a 

so-called quasi-coordinate. The parameter ~. has no definite meaning. A 
definite meaning have dO, or the projection ~ which is connected by known 
relationships with the Euler angles and which characterizes the so-called 
characteristic rotation of the top (rotation about the top's characteristic 
axis). 

2. The equations of motion for the top in terms of the paramete~s /*, 

y* and ~ under the assumption of small X*, Y* and ~ -- ~ are of the 

form 

A1X*'" + C l e Y * "  - -  gllM1 X* - -  My.  (p*) - -  Mv* 6 = 0 

A1Y*'" - -  CxoX*" - -  glxM1Y* q M~* (p*) q- M~. ° ' =  0 (t.t) 
C 1 ~ "  - -  M z *  ( p $ )  - -  Mz "° = 0 

Here M~* (p*), M~* (p*) and Mz, (p*) are the moment projections of 
fluid pressure forces acting on the shell of the top, ix, °, My* °, Mz. ° are 

the moment projections of the external nongravitatlonal forces. The system 

of equations (l.1) is incomplete since it includes the moment of fluid pres- 

sure forces which should be determined by the use of hydrodynamic equations 

du* i 
dt -F" ~ grad p* = F - -  gk, div u* = 0 ( t .2 )  

where I is the vector of external mass forces and k is the unit vector 

along the z*-axls. A natural boundary condition for Equations (1.2) is the 

impermeability of the top's shell to fluid particles 

Here w,* is the normal component of the transport velocity of the top's 

shell dependent on the parameters X*, F*, ~ • 

The boundery condition therefore represents a feedback, and along with 
Equations (1.1) and the partial differential equations ~1.2) yields a com- 
plete totality of relationships.which fully determine the motion of the sys- 
tem of the top plus the fluid for arbitrary initial conditions. It would 
be too optimistic to expect an explicit expression for this motion. Such an 
objective is not set in this case. The objective, as noted previously, is 
to investigate the stability conditions in one sense or another, i.e. in 
establishing the conditions for which the motion corresponding to a small 
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deviation from a free, uniform rotation about the vertical (*) will remain 
always small or bounded, or will not increase beyond a given order of magni- 
tude with time dependent on the growth character of the external forces. 

3. In investigating the effect of perturbations, it is natural to con- 

sider not the complete solution of the problem of perturbed motion but only 

the difference of thls solution and the solution for unperturbed motion (*). 

This, apparently, requires the use of the coordinate system Omyz , which 

rotates about the z*-axls with angular velocity w and which coincides ini- 

tially with the fixed system Ox*y*z*. Furthermore, instead of the scalar 

functlon p* and the scalar ~ it is necessary to introduce another scalar 

function p (expressing the excess of fluid pressure, within the accuraby of 

an unessential constant, and resulting from the effect of the perturbation) 

and another scalar @ by the relationship 

p* = - - p g z *  + 1/~p~2(x,2_~ y , 2 ) + p ,  ~ = e  + 0  (i.4) 

The acceleration of a fluid particle in the fixed system consists of the 

relative, transport and Corlolis accelerations. Utilizing this fact and 

(1.4), the equations of motion for the fluid in the rotating system of coor- 

dinates are oOtalned from (1.2) after neglecting the small terms of second 

o r d e r  Ou x 1 Op OUz i Op 

au~l 1 ap aUx Our &tz 
at ÷ 2 m u ~ +  P ay _ F , ,  az-  + ay + T z  --- 

Utilizing the relationship (1.4) ~t can be shown [I] that 

Mx. ( p * )  = Mx. (p) - -  (gl2M2 + w2A2 - -  ~2C2) Y* 
My. (p*) = Mu. @) + ( g 4 M ,  + o*A,  - -  ~C~) X* 

Mz.  (p*) -= M~. (p) 

Substituting these expressions into Equations (i.I) and introducing the 

complex parameter Z ~ X -~- i} z ~ e -~t (X* -~- iY*), we get the complex form 

of the top's equations of motion in the rotating system of coordinates 

A~Z'" - -  (C~ - -  2A,) i~Z" + L ~ Z  + 2 iN  (p) + 2 iN  ° = 0 

C , 0 - -  M,  (p) - -  M /  = 0 0 .6)  

Here 

2N (p) = M ~ ( p )  4 iMp(p) ,  2N °-= M~ ° + iMu ° 

Let us introduce 

F = z (cos nx  + i cos ny) - -  (x + iy) cos nz, v --- x cos ny - -  y cos nx ( 1 . 7 )  

* )  The f ree  ( F - ~  M I .  = M , : =  M z : = O )  and uniform (~ - w - ooms~) r o t a t i o n  
about the v e r t i c a l  (u~per~uz;bed motion) haS, as can be e a s i l y  shOWn, the 

simple complete s o l u t i o n  
X * =  Y * =  O, ~ = ~ ,  U * ~  ~ k × r ,  p * = Z / 2  p~(z*~-]-y*2)--pgz*+const. 
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Then we get 

If = 2 N  

Now let us express conveniently the b0undary condition (1.3). The top's 

shell participates in two rotational ~otlons caused by the deviation of the 

axis and its characteristic rotation. It is not difficult to see that the 

vector of angular velocity of the first motion is equal to (-- Y', X', O) 

in the rotating coordinate, while the second motion has the angular velocity 

(0, 0, e) with the accuracy of up to the infinitely small terms of second 

order. 

Consequently, the transport velocity of the top's shell is expressed by 

the vector (X'z -- Oy, Y'z 4- O x, -- X'x -- Y'y), and condition (1.3) yields 

the relation for the points on the surface S 

u= ---- X" (z  c o s  nx - -  x c o s  nz) 4- Y" (z c o s  ny - -  y c o s  nz) -4- 

-t- 0 (x cos ny - -  y c o s  nx) 

For convenience, let us express this condition by Z and e . We have 

u~ = ~/~ (z" ~ + 2 ~ )  4- o ~ (t.9) 
where ~ and ~ are determined by the equalities (i.7). 

We introduce the complex variable ~ = x + tY and the complex functions 

(t.to) u~ = u~ 4- iu~, u~ = ux - -  iu~, F~ = F~ 4- iFv, F~ ---- F~ - -  iFy 

D e f i n i n g  f u r t h e r  t h e  f o r m a l  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  C and 

by t h e  e q u a l i t i e s  

it is easy to express the system (1.5) in a complex form. Thus 

Ou~ 2 Op OUz I .Op - - F z  
Ot 4- 2 i~u~ 4- p O~ - -  F ~ '  Ot 4- p Oz 

Ou~ 2 Op Our, Ou~ Ou z 
(i.~i) 

The expediency of complex variables is manifested in the possibility of 
representing the complete solution of the combined motion of the top and the 
fluid as a sum of ~ particular solutions (recalling that k is the order 
of symmetry of the top). Also, only two of the k sloutions need to be 
investigated since in the remaining solutions the interaction of the top and 
the fluid is absent. Futhermore, it appears that these solutions, in turn, 
can be investigated separately since in one of them only the Z parameter 
of the to~ participates along with the fluid parameters ~the e parameter 
is absent), and in the second solution only the e parameter is included 
(Z is absent). 

Decomposition of the complete solution into k solutions occurs as fol- 

lows (see [i]). Let ~(x, y, z; $) be an arbitrary (complex valued) func- 

tion defined for t~ 0 in a region V bounded by the surface S • Let us 

regard x ~ t as parameters with ~ a function of two real variables 

x and y . Each such function ~ will be connected with a function of a 



/~0 N.N. Vakhanl la  

pair of complex variables C and ~ , for slmpllclty denoted by the odme 

symbol ¢ , and defined by the equality 

= (l& + _ i - z ,  t ) .  

The two-dlmermlonal complex ~llllfold on which the function ~(C, C) ls 

defined is Elven by the condition (~, y,Z)~V. In view of the assumed sym- 

metry of the region V • It is apparent that for any pair (C, ~) in the 

reglon where ¢(C, ~) is defined there is a pair (~ exp (2hi//k), 
8xp (~ 2~t~ / k)) for any integral ~ Let us consider now the k new 

i unctions t ~'-z 2z~ils 2z~il - -  ~i l  
q~(') ([' ~ ) = - - k - 2  exp---y--  q~(~exp----~ , ~ e x p - - 2 - - )  ( s=O, i  . . . . .  k - - l )  

/ : 0  

It is apparent that ~(s) can also be defined for a11 integral s by 

settlng ~(s,) ~ ~(s,) for 6'I ~ 82 (mod k). Also, in particular for the real 

• we g e t  ~9(_s) ~ ~(s). 

The f o l l o w i n g  e x p a n s i o n  I s  e a s i l y  shown t o  b e  v a l i d  

k-I  

8 ==0 

The uniqueness of such an e~anslon is obvious: if ~ ~ 0, then (~(s) ~ 0 

for ar~ s . 

The functions ~(8) possess the distinctive periodicity 

¢<.~ ~ e x p - - - k -  , ~ e x p  = exp -2~ i s  

It is easy to prove by direct calculation the validity of the converse 

statement: if a certain function ~ possesses periodicity in the stated 

sense wi~h period s , then ~s' ~- 0 for $' ~ S and ~(s) = ~. 

5. Let us now apply the (s) operation to Equations (I.II). Talcing into 

consideration the easily verifiable relationships 

/0¢p , Oq~(~)_ 

we get ( s = 0 , t , . . . ,  k - - t )  

2 

O"L ~.+~1 2io~uL (.+~) -b 2 o~:~ _ FL <.÷~) (t.12) 
ot p o~ 

Ou~, ( s -n  Ou-~, {s+l) buz,  (s) ou~, t.~ t op~.~ = Fz,  -k  = q -  ~ = 0 

The system (l.ll) is therefore divided. Instead o f  a s~le system• we 

get k new s y s t e m s  relatlal~ ~ ,  (s-l~, ~ ,  (s+l), ~z, (s): ~(s).  

L e t  us  t u r n  now t o  t h e  bou~la .~y  c o n d i t i o n .  S ~ b s t i t u ~  t h e  e.x~reasA~.s 
for ~, add ~, from (i.I0) into (1.9) we ~et the follca~ rel~i~hlp on 

S : 
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Noting that 

~u~ -t- ~u~ + 2tt~ cos nz = Z'-~ -~- Z" ~ + 2Ov 

k = c o s n x +  i c o s n y  
( i . i3)  

~ e x p - ~ - ,  - -  = e x p  - -  ( ~ , ~ )  

~- ~ e x p ~ - - ,  - -  - -  ~ e x p  k - -  

(~exp  2~i ~ e x p - - 2 a i  ) 2ai ~ - - ,  = exp - ~ - ~  (~, ~) 

2~tt ~- - -  2~ti \ - -  2~ i  -- ,~ 
~- ~ exp ~ U - '  ~ exp - -U-- )  = exp ~ 1 • (g, ~) 

2 ~ i  ~- - -  2 ~ i . \  
v ~ e x p ~ - - ,  ~ e x p - - - U - -  ) = v  ( ~ , ~ )  

we o b t a i n  ~ - -  ~(-1) ,  ~ ~ ~(1.), ~ = ~(-1) ,  ~ ~ I-t(1) ~ ~ ~--- V(O). Therefore, 

applying the (e) operar, lon to 0otn parts of the equa l i t y  ( i .13 )  we get the 

fo l l ow ing  condi t ion on S : 

Z,u~, (~_~) + ~u~, (~+,) ~- 2uz(~)-cos nz = 

I z% ! 

-- ! Z'~t s = - - i - ~ k - - I  ( m o d k )  
= Z'~(~) + Z" pt(~) ÷ 20 %) = 2or ~ ~ o 

J 
[ 0 for other e 

(i.14) 

Substituting into M,(p) the expression p , we get, in accordance with 

(1.8), k-i 

Mz (p)= 2 If (1.t5) 
8 = 0  

We make a change of variables in each of the integrals in (i.15) and 

rotate the coordinate axes in the xy plane through an angle ~/k • Also 

i~ view of the symmetry of the top, the region of integration will not chamge. 

In accordance with the above indicated property of the ~ function periodi- 

city, the P(s) function will transpose into exp (-- 2s~i / k)Pisp while the 

function will not charge since v ~ ~(0), as was shown previously. The 

Jacobian of this transformation is apparently equal to unity. Therefore, 

-~ exp ~ p(~) 

and consequently, all integrals in (1.15) vanish except the integral in 

which e - 0 . It is shown analogously that the integral on S from P(s) 

is equal to zero if s # I . Thus, we get 

Mz (p) = M~ (P<o)), N (p) ----- N (P(1)) (1.t6) 

6. Now it remains only to draw the conclusions. The system of equations 

(1.6) which describes the motion of the top contains the p function for 

the determination of which were invoked the relationships (1.12) and (I.14). 

However, according to (1.6) and (1.16) the motion of the top is affected 

only by the components P(o) and P(1), which can be determined from (1.12) and 
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(i.I#) for s - 0 and s . i . Conversely, the top affects:only those com- 

ponents of fluid motion which are related by the relationships (1.12) and 

(1.1#) for the same values of s since for other values of 8 the boundary 

condition (I.14) is homogeneous and does not contain the parameters of the 

top. Furthermore, the ind~icated relationships show that the parameter Z 

is affected only by the component D(1), while the system of relationships 

determining P(t), does not contain the 8 parameter. Conversely, the 

parameter is affected only by the component P(0), which is determined by con- 

sidering the relations (1.12) and (1.14) for s = 0 in which Z does not 

appear. Thus, only the cases (*) s = 0 and s = i need to be investigated 

These cases are not connected to each other and can be investigated separa- 

tely. The case of s = I has been studied in,[1]. The stability for s = O~ 

however, (the stability of the 0 parameter) is proved in the following. 

2. i. In order to transfer the top effect from the boundary conditions 

into the equations, let us introduce the following new functions 

• O~U' % = i (u L (,) - -  u~,  ( _ ~ ) ) -  2 0  ,~j~ 

,J~ =-2u~, (o)- 20 O~ 

where the $ function is defined by the conditions 

A~ .... 0, @ i (2.1) o,-7 I,~ - v 

Lu accordance with (i.14) (for s = 0), the V vector satisfies the homo- 

geneous boundary condition u,- 0 on 8 . And the equation for v is 

obtained from Equations (i.12) for e - 0 by addition and subtraction. Thus, 

we have 

ov 20p{o) + 90" 0¢ __ 4~0 ~ = G~ dt 2tovu -]'- p Ox " Ox 

0%Ot 4- 2(ovx + 0"2 OP(o)ov 4- " 90. OVa* + 4mO OxO* = G~ (2.2) 

Ov z 
OPc°)4- ~ Gz, div v 0, v .  Is 0 2 

ot + - -  -0-- 20" = = = P where 

g x = F~, (I) + ~'~, (-I), gy = i (1~'~, (I) - -  F¢, (-1))9 G:, = 2F~.  (o) 

The system of equations (2.2) alOng with the second equation of system 

(1.6), in which according to (1.16) them z (p)should be replaced by M~ (P(o)), 
yields a closed system of relationships which will be termed the ~O system. 

Before investigating the D o system, we will nmke the following remark. 

Xf it is regarded that the vector a is continuous in the region Z up 

to the boundary and that It has continuous derivatives of first order inside 

V , then without loss of generality it can be stated that it is of a certain 

special form, r~mely 
G = q~ ( t )  g r a d ~ p  + ~F (x, V, z; t) 

* )  I t  can be e u l l y  seen t h a t  t h e  s o l u t l o t ~  o f  t h e  p r o b l e m  f o r  : - k - - 1  r i l l  
be s t m p l y  a o o l ~ l e x - e o n , l U l E a t e  t o  t h e  s o l u ~  f o r  s = 1 . 
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where ~ is a certain (known) function only of t, , is the solution of 

the boundary value problem (2.1), and the vector U~ satisfies the conditions 

d i v W  = O, W ~ =  0 o,1 S (2.3} 

In order to prove this statement, we will-denote by • (x, y, z; t) the solu- 
tion of the Neumann problem with the boundary condition O~P/On ~ G n on S 
for the Poisson's equation (in space variables) with the right-hans side 
equal to div Q.. It is obvious, here, that ~F :-G- grads satisfies both 
conditions (2.3). Consequently, it is only necessary co show that the 
function can be considered equal to ~(~)$(x,y,z) . Denoting, 

we get  the expansion (I) ~ [ (x, y, z; t) + q~ (t)~p (x, y, z), where the f f unc t i on  
satisfies the condition 

It remains to be noted that without loss of generality one may regard 
] ~ 0, since the particular solution of the considered (linear) system D e , 
corresponding to the case of ] ~0, ~ ~ 0, • ~ 0, M~ =-~ 0, is found by elemen- 
tary means and is of the simple form 0 ~- 0, v ~ 0, P(0) ~ I/2 P]" Thus the given 
statement is fully proved. 

Let us introduce now instead of the function PC0) the function 

q = 2p(o ) -4- 2pO"~p - -  txp~ (2.5) 

Then the equations of system (2.2) will become 

Oi~x 1 Oq 4 ( o 0 ~  = ~ 
Ot 2(ov~-3 u P Ox 

~v v 1 aq 0~ at + 2(ov~ + T a--f -4- 4¢o0 -~x  = W~ (2.6)  

0% -4- - - t  Oq = ~z,  d i v v = O ,  V n l s = O  

Multiplying the first three equations of system (2.6) by ~,/Sx , ~*/~y 
and b,/Bz respectively, adding and intergrating with respect to V , we 

obtain on the strength of (2.1), (2.3) and (2.6) 

2(olf I (v~-~y --v~,O0~)dV -4- t II qvdS = 0  

The obtained equation in conJuctlon with the second equation of system 

(1.6) and the equalities (i.16) and (2.5) gives 

~-y - -  v~ dV = M~ ° -'-, ¢p~22 (2.7) 

Here a is determined by (2.4). The system of equations (2.6) and (2.7) 

is in convenient form of the system ~8 for its further investigation. It 

is easy to see that all quantities in the system D e are real. 

Taking the div operator from the first three equations in (2.6) we get 

(% % 1 (2.8) after addition Aq := 2o~p \ ~ Oy / 

The equations o f  the system (2.6) also yield the boundary condition on S 

( 0, 0, ) Oqon - - 2 p ( o ( v ~ c o s n x - -  V~cCOSny)+4(oOP - ~ y  c o s n x - - ~ c o s n y  (2.9) 
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I t  f o l l o w s  t h a t  t h e  ~ u n e t l o n  g l s  d e t e r m i n e d  ( w l t h  a o e t ~ a c y  o f  up t o  

t h e  u n e s s e n t i a l  c o n s t a n t  t e r m )  b y  s p e c l f ~ l x ~  • and  0 • C o n s e q u e n t l y ,  

knowing  • and  e ( a n d  a l s o  t h e  e x t e r n a l  b e h a v i o r  • t h e  f ~ n c t l o n s  y , 

and  M, o )  a t  a n y  t l m e ,  one  c a n  compute  • l  " dT/dt,  and 91 - de/dr ,  i n  a c c o r d -  

a n c e  w l t h  E q u a t i o n s  ( 2 . 6 )  a n d  ( 2 . 7 )  w h l c h  t h u s  s p e c i f y  a c e r t a l n  o p e r a t o r  

t r a n s f o r m i n g  t h e  p a l s  ( • ,  8 )  i n t o  t h e  p a l e  ( s t ,  O~ ) ,  The e x a c t  d e t e r m i -  

n a t i o n  o f  t h l s  o p e r a t o r  i s  g i v e n  i n  t h e  f o l l o w i n g .  

2.  L e t  / /  d e n o t e  a K t l b e r t  s p a c e  o f  r e a l  v e c t o r  f l m o ~ t o r m  • d e f i n e d  

i n  t h e  r e g i o n  V and  s a t i s f y i n g  t h e  c o n d i t i o n s  

(a) 

( b )  F o r  a~v  f u n c t l o n  ~ ( x ,  y ,  a )  w h i c h  h a s  i n s i d e  t h e  r e g l o n  Y 

c o n t i n u o u s  f i r s t  o r d e r  d e r i v a t i v e s  t h e  s q u a r e s  o f  w h i c h  a r e  i n t e g r a b l e  i n  

~, t h e  f o l l o w i n g  i d e n t i t y  i s  v a l i d  

N o t e . F o r  s m o o t h  • f u n c t i o n s  t h e  c o n d i t i o n  ( b )  l s  e q u i v a l e n t  t o  
t h e  f ~ c l ~ l l l m o n t  o f  t h e  l a s t  two e q u a l l t i e s  i n  s y s t e m  ( 2 . 6 ) .  

( ~ ) .  The l i n e ~  m a n i f o l d  o f  • ~ u n e t l o n s  h a v i n g  d e r i v a t i v e s  o f  

arty o r ~ e r  c o n t i n u o u s  up t o  t h e  bo_und_e~y o f  t h e  r e g l o n  Y i s  e v e r y w h e r e  

d e n s e  i n  H • 

L e t ,  f u r t h e r m o r e ,  [ ~ ]  d e n o t e  t h e  r e a l  v e c t o r  s p a c e  o f  t h e  e l e m e n t s  

= (V, 0 )  ( v ~ H ,  0 l s  a r e a l  n u m b e r )  w i t h  a n a t u r a l  d e t e r m i n a t i o n  o f  

l i n e a r  o p e r a t i o n s  and  a norm g l v e n  b y  t h e  e q u a l i t y  IIRtl = m a x  {fiv[i, 10 I} • 

3.  The e q u a t i o n s  o f  t h e  s y s t e m  D0 ( E q u a t i o n s  ( 2 . 6 )  a n d  ( 2 . 7 ) )  c a n  be  

e x p r e s s e d  i n  t h e  f o r m  

Tl" = T R  + Ro, R" = (dr  / dt, dO / dt) (2.t0) 

Here  dV/dt,  I s  u n d e r s t o o d  i n  t h e  s e n s e  o f  a s t r o n g  c o n v e r g e n c e  i n  H 

o f  ~he c o r r e s o n d l n g  d i f f e r e n c e  r e l a t i o n s h i p ,  R o l s  t h e  e l e m e n t  o f  s p a c e  {~] 

h a y £ n 8  t h e  c o m p o n e n t s  [ ~ ,  2_Mz~ o ~_~q~S 
t i ) 2 (C; ~ ~ ' )  / 

and  Y l s a  l ~ e a r  o p e r a t o r  p r e s e n t l y  d e f i n e d  o n l y  f o r  t h o s e  e l e m e n t s  o f  

s p a c e  [~}  i n  w h i c h  • h a s  c o n t i n u o u s  d e r i v a t i v e s .  The s e t  o f  s u c h  e l e m e n t s ,  

i n  v iew o f  t h e  a b o v e  f o r m u l a t e d  L e m ,  l s  d e n s e  e v e r y w h e r e  i n  [ ~ ]  • T h e r e -  

f o r e ,  i f  t h e  o p e r a t o r  T becomes  b o u n d e d  i n  t h ~ s  s e t  i t  c a n  b e  e x t e n d e d  

u ~ q t ~ l y  o v e r  t h e  e n t l r e  a p a c e  [ ~ ]  . B e f o r e  s h o w ~  t h e  b o u ~ d e d ~ s s  o f  ~ 

we wlll wrlte out the ~ ' o r w ~ l ~  deflnin~ thls ope~tor. If one lets 

- ~ -  (¥ t ,  e; ) then, aoeox<iing to (2.6) and (2 .7 ) ,  we get  

*)  ~he proof  of  t h i s  ~ i s  contained i n  [ 2 ] .  
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Vlx -~ 20Jvv i Oq O,  i Oq O, 
p o~ -}- 40)0 au Vl~ = - -  2o~vx . . . .  @ , 0  

' p Oy O~ 

vl: - -  p Oz ' 01-~ 0 1 +  pct~ vu - -  ~= - ~ y  d V  

These formulas Should also be augmented by the relationships (2.8) and 

(2.9) which determine the function q in terms of the element ~ . Prom the 

the previous Note, it follows easily that TR ~ {R} for R ~ {R} .  

The boundedr~ess of the operator T cIu1 be proved. 

Let V be a sufficiently smooth vector. The first equation (2.12) 
yields the equality 

(0*) 9 +t6¢o '  Ov .0-- ~ 

The second and third equations of the system(2.1~) yield the similar 
equalities. Summir~ all threeequalltles and integrating over the region y, 
we get 

i 2 CC~/v Oq 
II Vl II ~ + 7 II grad q II 2 -{- - ~  ))~ .\ l x  ~ -]- 

) IIl Ifl Oq dV ~ 4o, z (vxz -t- vl/) dV + i6m~O ~ -~ + vlu ~y + vl~ ~ LtOx/ 

t o y / J  

Let us el4m4~ate the second term in the left-hand side of  this equality. 
The next term is equal to zero in view of the property (b) in the definition 
of the space E . On the strength of the same property the last integral on 
the rlg~ht-hand side can be replaced by an integral over V from --v x (~$/Oz). 
Taking the above into consideration, we obtain the followlng bounds : 

IIv, I1 < 2~ ( l lv l l+ 2 lo is )  ~< 2(o (t -I- 2a)IIRII (2.!3) 

The last equallty of system (2.12) yields the bounds 

2 pcoa IIv tl ~< 2 p~oa II n II (2.14) IOl l~ C l _ l _ p  az C l - ~  pa ~ 

Prom (2 .13)  and (2.1~I),  one g e t s ,  a p p a r e n t l y ,  the  f o l l o w i n g  bounds f o r  
the  norm of  t he  Ope ra to r  

II T li ~< max 2(o (1 + 2a), 01 + pu' 

Thus, the operator T is bounded a~ it can be extended over the entire 

space [~}. it is also obvious that the smooth solutions of Equation (5.10) 

will be the solutions of the ~e system, and conversely, the solutions of 

the D e system will be smooth solutions of Equation (5.10). The solutions 

of Equation (2.10) however, which have no classical derivatives can be 

regarded naturally as the Eenerallzed solutions of the ~8 system. 

~. We continue the investigation of Equation (2.10). Let us first con- 

side~" the corresponding homogeneous equation 

R" = T R  ( 2 . i 5 )  

It can be easily shown by dlrect verlflcation that the solution of  Equa- 

tion (5.15 is of the form 
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R (t) = e Ft Rio), t~ '(°) = (v It=o, 0 It=o) ( 2 . t 6 )  

Here the operator e Tt is understood in the sense of a strong convergence 

of the corresponding power series guaranteed by the boundedness of the oper- 

ator T in view of the obvious inequality II Tall <If TII m (m = ~, o .... ). 

It call be shown that there exists in the entire space [R} a glvenpositive- 

deflnite blllnear form Q (R(1), R(2)), with respect to whlch the operator T 

is antlsymmetrlc in the sense that 

Q (TR (1), R (~)) = - -  Q (R (~), Tit (')) (2 .17)  

In order to prove this, we will seek the form Q in the form 

Q (R(1), R(2))_ QI f f l  ('vx(1) vx(2) + vy(1) vy(2J + vz(1) vz(f$)) dV -~- Q2o (1) 0 (2) 

where Q, and Q~ are positive constants subject to determination. 

Then, utilizing (2.12), we get 

~ - 

P(00(2) Q' I l l  O, 0__~ ~)x(1))dV 
Ox C 1 + pa z Oy 

It is now obvious that the inequality (2.17) will be fulfilled, and Qt 
and Qa satisfy the condition pQ~ = 4 (CI+ 9~2) QI. As should have been 
expected, this co~Ition defines Q~ and Q~ within the accuracy of a common 
multiplier. Letting, for example, Q~- ~p, Qse C~+ 0a s we obtain the bilin- 
ear form satisfying condition (9.17). 

From ( 2 . 1 7 )  we have Q (TaR (~), R I')) = (-- i)~Q (R (~), T~R (~)) (m= 1, 2, . . .) .  
Therefore, on the strength of the linearlty of Q , each argument separately 

eas i ly  yields  Q (eTtR (1), R (g') = Q (R (1), e-TtR(')). Consequently, the follow- 
ing relationship is valid: 

Q (ert R,  ertR) = q (R, R), R ~ {R} (2.t8) 

The stability of the solution of the homogeneous equation (2.15) follows 

easlly from the derlved relationship. Indeed, let us introduce in the space 

JR} along wlth the orlginal norm also the equivalent norm generated by the 

Q form. IIR 11, = V q (~, R) (2A9) 
At the same time the equality (2.18) shows that whatever the Inltial value 

of ~(0) the solution of the Cauchy problem for Equation (2.15) defined by 

Formula (R.16), remains for all time on the surface of a fixed sphere with 

center at  the or ig in  (zero) and the radius equal to ~ Q (R(0), R(e)), i . e .  
~a (g)Ill ~-~Rte)l]l for any time t . Thus, in the case of smallness of the 

v a l u e s  o f  I1"11 and l e l  f o r  t - o , the qul~ , . . t i t les  I I v ( t ) l l  ~ d  I o ( t ) l  remain 

small for all time. This indicates the stability of the equations of system 
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D e and, in particular, the stability of the parameter e in the case of 

zero external nengravitational forces. 

The equality (2.18) can also be interpreted somewhat differently. It shows 
that the posltlve-deflnlte quadratic form Q~, R) is the integral of motion 
of Equation (2.15) since along the trajectory of thld equation dQ/dt • 0 
in view of (2.16) and (2.18). 

Let us turnnowto the nonhomogeneous equation (2.10). The solution of this 

equation, as can be verified directly, is of the form 
t 

t? (6 = ert t~ I°l -~ I eT~l-~ I~o (~) d~ (2.20) 
o 

where the integral is understood in the sense of a strong convergence of the 

corresponding integral sum. Utilizing the equalities (2.18) and (2.19) and 

taking an elementary estimate, we obtain from (2.20) 
t 

]]R ( t ) [ ] l - ~ l l R ( ° ) H ,  + - J  (t), J(t) = = i ! ] / ~ , , ( ~ ) i  I, , d* (2.21)  
O 

Thus,  fol  t h e  p a r a m e t e r  0 ( i n  c o n t r a s t  to  the  p a r a m e t e r s  X and y) 
t h e r e  a r e  no r e s o n a n c e  phenomena such as  a f a s t  i n c r e a s e  w i t h  t f o r  s p e c i -  
f i c  ,elatlonshlps among the problem constants and the geometric form of the 

top shell. If, for example, fIR o (t)il, remains bounded for the entire period 

of time, then, acoordlng to (2.21), llR(t)ll: (in particular 8(t) ) increases 

no faster than the first order of t . Furthermore, for small initial values 

of IIR(0)III, as well as the "summed action" of the external forces (quantity 

J(~)), then llR(t)ll ~ (in particular O(t)) also remains small for the entire 

perlod,of time. In this sense, it can be stated that the stability exists 

also in the general (nonhomogeneous: F~ 0, Mz°-~ 0) case. 
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